جامعه پژوهی فرهنگی

نوع مقاله : علمی-پژوهشی

نویسنده

عضو هیات علمی/موسسه عالی آموزش و پژوهش مدیریت و برنامه ریزی

چکیده

در چند دهه گذشته تحلیل علی برمبنای رهیافت خلاف واقعیت در علوم اجتماعی گسترش قابل ملاحظه ای یافته است. این دانش امکان برآورد تاثیر علّی و نیز ارزیابی سیاستها و پروژه های اجتماعی را فراهم میسازد. مقاله به ارایه یکی از روشهای برآورد تاثیر علّی، روش همتا سازی، میپردازد. ابتدا چارچوب نظری تحلیل علی برمبنای رهیافت خلاف واقعیت ارایه میشود. سپس، با استفاده از روش همتا سازی فاصله ای با نمرات گرایش، تاثیر سواد مادر بر مرگ و میر کودکان در ایران برآورد میشود. داده های بکار رفته از بررسی جمعیتی و بهداشتی ایران است. نتایج نشان میدهد که برای موارد همتا شده، سواد مادران باعث کاهش مرگ و میر کودکان به اندازه 18 مرگ در هزار تولد زنده میشود. مقاله همچنین محدودیتهای کاربرد روش را در مطالعات مشاهده ای ارایه میکند.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of causal effect in the social sciences with matching

نویسنده [English]

  • Seyed Farrokh Mostafavi

چکیده [English]

The counterfactual approach to causal analysis has received considerable attention in the social sciences. The method makes it possible to estimate causal effects and evaluate social policies and projects. This paper presents the theoretical framework for causal analysis based on counterfactual framework. Then, using interval matching with propensity scores, the effect of mother’s literacy on infant mortality is estimated. Data used is from Iran Demographic and Health Survey. The results indicate that for matched cases mother’s literacy reduces infant mortality by about 18 deaths per thousand live births. The paper also presents the limitations of the method in observational studies

کلیدواژه‌ها [English]

  • interval matching
  • propensity scores
  • infant mortality
  • mother’s literacy
  • counterfactual
  • average treatment effect

وزارت بهداشت، درمان و آموزش پزشکی. (1379). سیمای جمعیت و سلامت در جمهوری اسلامی ایران. تهران:  وزارت بهداشت، درمان و آموزش پزشکی.

Abadie, A., Druckker, D., Herr, J.L., and Imbens, G.W. (2001). “Implementing matching estimators for average treatment effects in Stata”, The Stata Journal 1, 1-18.

Becker, S.O., and Ichino, A. (2002). “Estimation of average treatment effects based on propensity scores”, The Stata Journal, 2, 358-77.

Blundell, R., Dearden, L., & Sianesi, B. (2005). “Evaluating the impact of education on earnings in UK: Models, methods and results from the NCDS”, Journal of the Royal Statistical Society, Series A, 168, 473-512.

Caliendo, M. (2006). “Microeconomic Evaluation of Labour Market Policies”, Berlin: Springer.

Cochran, W. (1968). “The effectiveness of adjustment by subclassification in removing bias in observational studies”, Biometrics, 24, 295-314.

Dehejia, R.H., & Wahba, S. (1999). “Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs”, Journal of the American Statistical Association, 94, 1053-1062.

Heckman, J.J. (1992). “Randomization and social policy evaluation”, in Manski, C.F. and Garfinkel, I. (eds), Evaluating Welfare and Training Programs, Cambridge, MA: Harvard University Press, pp. 201-30.

Heckman, J.J., Ichimora, H., & Todd, P. (1997). “Matching as an econometric evaluation estimator: Evidence from a job training programme”, Review of Economic Studies, 64, 605-654.

Heckman, J.J., Ichimora, H., & Todd, P. (1998). “Matching as an econometric evaluation estimator”, Review of Economic Studies, 65,261-94.

Holland, P.W. (1986). “Statistics and causal inference (with discussion)”, Journal of American Statistical Association, 81, 945-70.

Imbens, G. (2004). “Nonparametric estimation of average treatment effects under exogeneity: A review”, Review of Economics and Statistics, 86, 4-29.

Leuven, E. and Sianesi, B. (2003). “Psmatch2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing,” http://ideas.repec.org/c/boc/bocode/s432001.html,versionx.x.x.

Marini, M.M., and Singer, B. (1998). “Causality in the social sciences” Sociological Methodology, 18, 347-409.

Morgan, S. and Harding, D.J. (2006). “Matching estimators of causal effects: Prospects and pitfalls in theory and practice”, Sociological Methods and Research, 35, 3-60.

Rosenbaum, P.R., & Rubin, D.B. (1983). “The central role of propensity score in observational studies for causal effects”, Biometrika, 76, 41-55.

Rubin, D.B. (1980). “Comment on “Randomization analysis of experimental data: The Fisher randomization test,” by D. Basu”, Journal of the American Statistical Association, 75, 591-593.

Rubin, D.B., & Thomas, N. (1996). “Matching using estimated propensity scores: Relating theory to practice”, Biometrics, 52, 249-264.

Sianesi, B. (2004). “An evaluation of the Swedish system of active labour market programmes in the 1990s”, Review of Economics and Statistics, 86, 133-155.

Smith, J., & Todd, P. (2005). “Does matching overcome LaLonde’s critique of nonexperimental estimators?”, Journal of Econometrics, 125, 305-353.

Statistical Centre of Iran (2008). Iran Statistical Yearbook 1385 [2006–2007], Tehran: Statistical Centre of Iran.

Weber, Max (1958). The Protestant Ethic and the Spirit of Capitalism. New York: Charles Scribner’s Sons.

-                      Winship, C. and Sobel, M. (2004). “ Causal Inference in Sociological Studies”, in Hardy, M. and A. Bryman (eds), Handbook of Data Analysis, London: Sage Publications.